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SPECTRAL EVOLUTION EQUATION FOR THE SIDEBAND
INSTABILITY IN A FREE-ELECTRON LASER OSCILLATOR*

Paul J. CHANNELL, MS-HR29

Los Alarmos National Laboratory, Los Alamos, N 87545

Assuming that the light reniains in the optical system while the electrons
vass through and are lost, we have derived the evolution equation for an arbitrary
optical spectrum in a free-electron laser oscillator. The resulting integroditfer-
ential equation includes the effects of linear optical system losses (due to either
mirror reflectivity or clipping), the usual small signal gain term, and a quadratic
nonlinear term that includes the effects of saturation and coupling to sideband
modes. The effects of detuning and particle beam current and energy variations
can easily be included. Results of numerical solutions of the equations for various

conditions will be presented,

1. Introduction

The sideband instability is thonght to he important in the dynamics of
free-clectron lasers (FELs) anc in fact has been observed in the saturated siale of
the Los Alamos oscillator experiment [1]. Most analyses of the instability, includ-
ing the original (2], have concentrated on long wigglers (long enough that many
synchrotron oscillations ocenr) and have assumed a shatp optical spectrum,
Althongh this i« the situation we would like to achieve, present FEL oscillator
experiments are asually relatively short (less than one or two synchrotron oscilla
tions oceur) and display a broae optical spectrum {31, Our purpose here is to ont

lue o theory that deseribes the present sitiation for FEL oseillators to hetter nn
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derstand experimental results with broad spectra and to develop tor such experi-
ments a tool to predict the elfects of varions modifications, such as irrors with en-
hanced damping at certain wavelength ranges. Although we are able in this work
to allow more general optical spectra than in most treatments, we must pay the
price of restricting the length of the wiggier to less than a couple of synchrotron
oscillations lung; i.e.. we relax the restrictions on the light but increase the restric
tions on the particles. Thus, our theory is aimed precisely at the present exper-
iments but cannot be easily extended with confidence to future very high power
devices.

In an FEL oscillator, the electron beamm passes through the wiggler once and
is either discarded or undergoes energy recovery while the optical beam is con-
fined by the mirrors for a large nnumber of passes. Thns, though an electron is not
in the system long enough (in short wigglers) to undergo a full synchrotron oscil-
lation, the light stays in the system and carries the information about the particle
oscillations in such o way that a sideband instability can develop. 'This fact sng-
gests that one should concentrate on the information carried by the optical bewn
rather than on the dynamics of the electrons in such FELs. This is the course
we will tuke, thongh the interaction of the electrons in the wiggler with the opti-
cal heam is still included in a self-consistent manner. We will derive an evolution
equation for the optical spectrum that includes the effects of the sideband insta-
bility and of nonlinear saturation. By considering the time-independent states of
this equation, we can derive satverated states and will tind good agreement be-
tween {hese results and the experiment.

Nate that in this prper we will speak of the length of the wiggler in tenns
of the number of synchrotron oscillotions nn electron wonld aderge in the pres.
ence of a single specteal component even thongh we are not assuming that the
spectrum is narrow enongh for synchrotron oscillations to be well defined. A nar
row spectrum is, in some sense, the worst case for the vadidity of our theory, thongh
it shovdd be weenrate for o small mimber of ssnehrotron oseillations evencin saeh i
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In the next section, we will present the physical model we use and will in-
dicate how the derivation of the spectral equation proceeds in general. In the
succeeding section, we will specialize the general theory to the case of a constant
parameter wiggler. outline details of the particle trajectories deseription, present
some general remarks on the dyvnamics that result, and compare the results for
one case to the experiment. In the final section, we will discuss our results and

indicate possible directions for fmture work.

2. General model

As in ref. {2], we will use a one-dimensional model of the FEL; we ignore
the transverse variation of the light amplitude, the particle distribution function,
and the wiggler magnetic field, though the occurrence of three-dimensional eflects
is now recognized as heing important for long wigglers. We will use an oscillator
model for the light; the light is assiwmed to remain in the system for a time long
compared to the time for a single pass through (he wiggler. Optical system losses
such as mirror abgorption and transmission and beam clipping are assumed to be
deseribed by a linear loss term, though this loss term is allowed to depend in an
arbitrary manner on wavelength.

The particles are assumed to he very relativistic so that we can ignore non-
resonant terms of order 1, 9%, In addition, we assume that the optical magnetic
field B, is not mnch larger than the wiggler magnetic field B, (an assumption
that remnins true even at fairly high power) so that the associnted vector poten-
tinls satisfy [A,0 - L4, ] This assswmption allows us to expand the particle mo-
tion in a series in Ly abont Ay 00 The zeroth order in this expansion is the (ree
motion of clectrons down the wiggler. The first order deseribes the lowest opder
interaction of the eleetpons with the light and allows ns to devive a smanll signnl
gain formuala that agrees with the conventional resalt, “To inelude satvration aned
sidebund etfects, it is necessary 1o carey this expansion to third order, ot which

point the teajectories of the eleetrons ineluding the interaction with the light ave



accurate cnough to describe the motion for about one or two synchrotron oscilla-
tions.

The electron bheam is given by a prescribed (possibly time-dependent) dis-
tribution at the beginning of cach pass, which then evolves in accordance with
the particle trajectories down the wiggler. Note that though the distribution is
prescribed a priorr at the heginning ol each pass, asually in a time-independent
manner, the evolution down the wiggler depends on the light spectrum at that
pass and, thus, will usnally be different from one pass to the next unless the spec-
trum is in a steady state. We will also asstme that the electron beam is not pre-
bunched on the optical scale length at the wiggler entrance: this assuniption is
violated in certain recent wiggler clesigns that include an optical bunching section.
[Finally, we will ignore particle discreteness effects so that spoutaneous emission
and related effects are uot included in our model.

To derive the evolution equation for the spectrum, we hegin with Maxwell's

cquation for the optical vector potential

|2, anJ
Vo=, (1

el PO
. RES TR ¢
where, assuming the wiggler field is iu the y-divrection and the beam axis is in the

s-direction, we expand the vector potential in modes of the optical system as

AL .rl:.-\,.(f)('ns[k,,(: ), (2

where the wave number b, 2mn, L, with L, being the optical system length,
Using this expimsion in Maxwell's equation and assuming moderate gains so that

second thne devividives of 4 (1) ean be ignored, we find that A, (1) satislies

\_:L-,,.t'.,msiuu-,,(: ct)l 2md (1), (4

n
where the dot indientes o time derivative, Noliiplying by sinlh, (s ef)l integent
ing in f over wopass throngh the wiggler, med then integeating in : over the wig.

eler length Ly we dind that the change in a component of the veetor potential in



a pass ._.l,, is given hy
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where 7' is the time to traverse the wiggler (7' - Ly ‘¢) and [, is the loss funec-
tion for the optical system. Dividing by the titne for the light to make a round
trip in the system (- 2L, ¢), we find that

d.‘ln] l"," 2"(- Lw I . ]
_.".'—- x '_)'L-‘. .-lnl ¢+ k;":"l‘“ ./': (’: ./: "' ,;(:.I,Hl"[k"'(: - ‘-',} . (.))

The electron beam current J, (2, 1) is given by
Jo(zol) — ¢ /.d:,«hnf..(:..m,)l',(!.'7n.:.)t“[SU-1o-=.) z] (6)

where fy is the clectron distribution function as a function of the initial energy
j0 anc initial position 3, at # 0. The & function localizes the integral on tle
dynanmiical trajectory (1, 90, 2,) with a transverse velocity vq(L, yg.2,), given ap-

proximately hy
where Y is the electron mass, Ay is the wiggler vector potential, and where,
for simplicity, we have assumed no transverse canonical momentum spread, We

maclel the wiggler hy

BTy Ao sin(ky ).

and, defining dimensionless vector potentinls by a = ¢ A/ Me, we tind

day, clway, medany T . . costh ) (0 5,090) ket
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where we have detined &, by 0 ke Up ot this point the tenjectories are un-
restricted, We note, however, that this equation is o complicited nonlinear ipte
aral cquation hecinse of the dependence of the electron trajectories on the optienl
fields, To evalunate the integrals, we now expand the tenjeetories in the amplitade

of the optical field and keep teems through thivd ordere, To compnte the particle



trajectories, it is convenient to use variables defined by I' = 92 and w = . The

trajectory equations then hecome

oz 1 '_‘ [ _”1-;. (|0)
dw STU
dl’ -~
— -z - qp ‘ kya,, u)s(k," z - hyar). (11)
duw

"I

Once the solutions of these equations are obtained as expansions, z = 39 + 3y +
24+z3+...and =19 +T) # P2 =3 + ... inay,, the dynamics portion of the
integrand in eq. (9),

(nslkm..(l.-..'\n) ket
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is expanded to the same order. 3 = 3o + 3; + 32 + 33 +.... Using the assumption
of no optical prebunching and ignoring particle discreteness effects, the integrals
of the zeroth order integrand Iy and the second order integrand 32 vanish; the

first- and third-order terins are given by
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Ax o result of the vanishing of 3o and 3,5, one can infer that the speetral

evolution equation hax the lor

r’".., l",,,

M 2"’"m Lty 4oy, .\_: 'N'"-"."'ll.,",.. (10

where g, is the simnll signal goin per pass and Remnor) is a kernel funetion that

inchides the ellects of nonhaear saturation and sideband conpling,
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3. Constant parameter wiggler

The expausions outlined in the previous section have heen carried ont in
detwl for the constant parameter wiggler used in the Los Alamos oscillator exper-
iment. 1] In this case. the expansions of the position = and the squared energy I’
are most efficiently carried out by recognizing that eqs. (10) and (11) are deriv-

able from a Hamiltonian

. 2+4ad =~ o
H=T- S Inl + }_‘ €m sin(k, 2 - ky ), (16)
m
with em = Amama./k,;. Using Hamilton-Jacobi perturbation theory to third

order, the lowest order in the action S is given by

So =Coz + e, (L7)
where
2 | ai
Cy = " l = In ro - Fo. ( lﬂ)
Defining supplementary variables ¢ = wand 3 = : - aw wherea =1 — (2 4

ai) (-1l's ). the higher order terms in the action satisfy
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e 121

o Az aE b =1
Fep. (19) is ensily integrated; given the solution, the right -hand side of eq. (20)

ix determined and con be integrated to give Sa. Given Sy and Sa, the right-hand
side of eq. (21) is determined and Sy can then be determined. Given the action S
through third order, the trajectories ean then be determined through thived order
from

A

-



S

5 = oy (23)
where (23) is an equation for the position = in terms of the initial position z; and
energy ['. Given these solutions, the results are substituted in eqs. (13) and (1-1)
to determine the required integrands. Although this procedure is straightforward,
a very large number of terms result. especially at third order; therefore, all of the
calculations were carricd out using an algehraic manipulation computer code,
SMP, a product of the Inference Corp. of Los Angeles, California. A number of
cousistency checks were applied to the calculation to ensure accuracy, including
the iclentical vanishing of several thousand terms that would otherwise have heen
singular. Even though the results of these calculations were considerably shorter
than the intermediate expressions, they were still long enough that their expres-
sion as FORTRAN code was also carried out in SMP to minimize the possibility

of error.

The form of the evolution equation that results from these calculations is

da,, clm

. —_— - - " 2 ‘)
dar -—2[;,""' + gmdm + am Zl‘("’!")a"v (24)

n,r

where K'(m.n) is a kernel function that includes both saturation aud sideband

effects, Defining the modal intensity by i :2 a3, eq. (24) can be rewritten as

‘h.m f"," , . o . , ]
‘”_ i"_'m F gmitm + -,-'m Z[\(m,n)r". (2_,)

n,r

Note that |)u|h_1.he stnall signal gain terin g, and the nonlinear kernel i'(mn, n)

still contain information about the electron benm distribution function, inclucding

a linear proportionality to the current. Becanse of the optical loss term. - ¢l iy, /L,
the dynamics in eq. (25) cannot be Hamiltonian, Ou the other hand, the form

of the nonlinear term precludes the possibility that the dynamics is gradient-like
with a simple evolution to steady state, Thus, we are led to expect that the dy-
namical behavior is generie, with stendy state solutions, hifureations to limit cles,

and chaotic motions all being possible and relevant depending on the parameters

N



. That bifurcations to more complicated behavior are likely can be argued by ob-
serving that the gain and nonlinear terms in eq. (25) are both praportional ta
current. Thus. at sufliciently high current they dominate the system loss terin,
leading to the prediction that steady states become independent of current at
sufficiently high current, i.e., putting more energy in the system gives no more
optical power. Because this result is counterintuitive, one might expect that the
steady state is irrelevant at very high current and that the spectrum is time epen-
den. even with zero detuning and steady electron heain current.

Although one can numerically integrate eq. (25) as an evolution equation
starting from assumed initial conditions to determine the relevant nonlinear dy-
namics, we have not yet debugged the resulting code. Instead, we present results
for the steady state, assuniing zero detuning and the same electron bean distribu-

tion from one pass to the next; i.e., we investigate solutions of

cl,, .

ﬂ:rm = gmim + In "Z'_K(m"")i"’ (26)

though recognizing the possible irrelevance of the solutions at very high current.
Eq. (26) was solved numerically by starting from the assumption of diagonal
dominance, i.e., ignoring the off-diagonal terms in K'(m,n) and iterating the equa-
tion including the ofl-diagonal terms using a Newton algorithm until the solution
converged. The result for one case using the parameters of the oscillator experi-
ment [1| with a peak curreut of 50 A is shown in fig. 1+ A Gaussian distribution
in energy with a full width of 1% and a parabolic distribution longitudinally were
used in the integrals over the beam distribution function. The optical system loss
function was ass.ume(l to be constant as a function of wavelength. Comparing

fig. L with the experimental vesults, fig. 2 [L], for the smallest detuuing it can be
seen that the agreement is very good, including both the number of peaks in * he
spectrum and their location with respect to the peak of the small signal gain., \l-
though it is difticnlt to extract the optical power from our one-dimensional model
with any precision, a nnive comparison nsing the quoted [1] value of the optical

beam size gives the same power trom the theory as was observed in the experi-



ment, i.e., several hundred megawatts. The importance of nonlinear effects is ob-
vious when it is observed that the peaks in the spectrum in fig. 1 do not lie on
the peak of the small signal gain curve.

To test the possibility of sidchand suppression using optical elements, a
model system loss curve as shown in fig. 3 was used in a run with otherwise iden-
tical parameters; the results for the steady state spectrum are shown in fig. 4. As
can be seen, the enhan-ed damping does result in a significant narrowing of the
optical spectrum, but at the cost of a factor of approximately 9 in optical power
as one would expect. Although this result is a very encouraging test for the the-
ory, it should not be overinterpreted hecause of the obvious inadequacy of the

mocdlel of optical system damping that was used.

4. Summary and discussion

We have presentied an outlizie of the derivation ol the spectral evolution
equation for FEL oscillators and preliminary results on the steady state spectrum.
The initial results compare very weli witl: the experimental results hoth in the
shape of the spectrum and in the magnitude of the steady state power.

There are a number of extensions and improvements of the theory that can
obviously be done. The successful development of a code integrating eq. (25)
would allow investigation of the start-up evolution and the eflects of optical sys-
tem detuning and varying beam current. Analyticaliv and numerically, one can
investigate thie linear stability of the nonlinear saturated states of eq. (26) to de-
termine wlen ole might expect bifurcations to limit cycles or chaotic hehavior.
Finally. one can obviously extend the treatment of particle motion to include
the effects of varinble parameter wigglers: in this case one can anticipate that
the resulting evolution equavion will be considerably less useful than the resnlts
of ref. |2, for the design of wigglers, bt might provide more insight (for a given
moderate length wiggler) into the nature of the saturated spectrinm.

Althongh the theory we have presented has a number of inherent limita-

10



tions and requires a number of extensions or improvements, it has already demon-
strated remarkably good agreement with experimental results and has shown
that very significant sideband eflects are predicted even for short wigglers with

no clearly defined synchrotron oscillations.
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Figure captions

Fig. |. Theoretical saturated spectrum and small signal gain as a function of

[ractional wavelength shift from the peak of the small signal gain.

Fig. 2. Experimental saturated spectrinn as a funcrion of fractional wavelength

shift from the peak of the small signal gain.

Fig, 3. Model loss enrve as function of waveleneth shift used to test sidebaned

suppression,
Fig., ‘L Theoretical satucated spectrim and siall signal gain as a function of



fractiona! wavelengtl: shifl from the peak of the small signal gain for model side-

band suppression optics.
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